Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(2): e16567, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233213

RESUMO

Soluble di-iron monooxygenase (SDIMO) enzymes enable insertion of oxygen into diverse substrates and play significant roles in biogeochemistry, bioremediation and biocatalysis. An unusual SDIMO was detected in an earlier study in the genome of the soil organism Solimonas soli, but was not characterized. Here, we show that the S. soli SDIMO is part of a new clade, which we define as 'Group 7'; these share a conserved gene organization with alkene monooxygenases but have only low amino acid identity. The S. soli genes (named zmoABCD) could be functionally expressed in Pseudomonas putida KT2440 but not in Escherichia coli TOP10. The recombinants made epoxides from C2 C8 alkenes, preferring small linear alkenes (e.g. propene), but also epoxidating branched, carboxylated and chlorinated substrates. Enzymatic epoxidation of acrylic acid was observed for the first time. ZmoABCD oxidised the organochlorine pollutants vinyl chloride (VC) and cis-1,2-dichloroethene (cDCE), with the release of inorganic chloride from VC but not cDCE. The original host bacterium S. soli could not grow on any alkenes tested but grew well on phenol and n-octane. Further work is needed to link ZmoABCD and the other Group 7 SDIMOs to specific physiological and ecological roles.


Assuntos
Gammaproteobacteria , Pseudomonas putida , Cloreto de Vinil , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Alcenos/metabolismo , Gammaproteobacteria/metabolismo , Biodegradação Ambiental , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
2.
iScience ; 26(11): 108301, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026211

RESUMO

Integrons are genetic elements, found among diverse bacteria and archaea, that capture and rearrange gene cassettes to rapidly generate genetic diversity and drive adaptation. Despite their broad taxonomic and geographic prevalence, and their role in microbial adaptation, the functions of gene cassettes remain poorly characterized. Here, using a combination of bioinformatic and experimental analyses, we examined the functional diversity of gene cassettes from different environments. We find that cassettes encode diverse antimicrobial resistance (AMR) determinants, including those conferring resistance to antibiotics currently in the developmental pipeline. Further, we find a subset of cassette functions is universally enriched relative to their broader metagenomes. These are largely involved in (a)biotic interactions, including AMR, phage defense, virulence, biodegradation, and stress tolerance. The remainder of functions are sample-specific, suggesting that they confer localised functions relevant to their microenvironment. Together, they comprise functional profiles different from bulk metagenomes, representing niche-adaptive components of the prokaryotic pangenome.

3.
Appl Environ Microbiol ; 89(3): e0159022, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36988354

RESUMO

Antimicrobial resistance in bacteria is a threat to both human and animal health. We aimed to understand the impact of domestication and antimicrobial treatment on the types and numbers of resistant bacteria, antibiotic resistance genes (ARGs), and class 1 integrons (C1I) in the equine gut microbiome. Antibiotic-resistant fecal bacteria were isolated from wild horses, healthy farm horses, and horses undergoing veterinary treatment, and isolates (9,083 colonies) were screened by PCR for C1I; these were found at frequencies of 9.8% (vet horses), 0.31% (farm horses), and 0.05% (wild horses). A collection of 71 unique C1I+ isolates (17 Actinobacteria and 54 Proteobacteria) was subjected to resistance profiling and genome sequencing. Farm horses yielded mostly C1I+ Actinobacteria (Rhodococcus, Micrococcus, Microbacterium, Arthrobacter, Glutamicibacter, Kocuria), while vet horses primarily yielded C1I+ Proteobacteria (Escherichia, Klebsiella, Enterobacter, Pantoea, Acinetobacter, Leclercia, Ochrobactrum); the vet isolates had more extensive resistance and stronger PC promoters in the C1Is. All integrons in Actinobacteria were flanked by copies of IS6100, except in Micrococcus, where a novel IS5 family element (ISMcte1) was implicated in mobilization. In the Proteobacteria, C1Is were predominantly associated with IS26 and also IS1, Tn21, Tn1721, Tn512, and a putative formaldehyde-resistance transposon (Tn7489). Several large C1I-containing plasmid contigs were retrieved; two of these (plasmid types Y and F) also had extensive sets of metal resistance genes, including a novel copper-resistance transposon (Tn7519). Both veterinary treatment and domestication increase the frequency of C1Is in equine gut microflora, and each of these anthropogenic factors selects for a distinct group of integron-containing bacteria. IMPORTANCE There is increasing acknowledgment that a "one health" approach is required to tackle the growing problem of antimicrobial resistance. This requires that the issue is examined from not only the perspective of human medicine but also includes consideration of the roles of antimicrobials in veterinary medicine and agriculture and recognizes the importance of other ecological compartments in the dissemination of ARGs and mobile genetic elements such as C1I. We have shown that domestication and veterinary treatment increase the frequency of occurrence of C1Is in the equine gut microflora and that, in healthy farm horses, the C1I are unexpectedly found in Actinobacteria, while in horses receiving antimicrobial veterinary treatments, a taxonomic shift occurs, and the more typical integron-containing Proteobacteria are found. We identified several new mobile genetic elements (plasmids, insertion sequences [IS], and transposons) on genomic contigs from the integron-containing equine bacteria.


Assuntos
Elementos de DNA Transponíveis , Domesticação , Cavalos , Animais , Humanos , Plasmídeos , Integrons/genética , Bactérias/genética , Antibacterianos/farmacologia
4.
Crit Rev Microbiol ; 47(5): 543-561, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33899656

RESUMO

Antibiotic resistance in bacterial pathogens is a growing problem for both human and veterinary medicine. Mobile genetic elements (MGEs) such as plasmids, transposons, and integrons enable the spread of antibiotic resistance genes (ARGs) among bacteria, and the overuse of antibiotics drives this process by providing the selection pressure for resistance genes to establish and persist in bacterial populations. Because bacteria, MGEs, and resistance genes can readily spread between different ecological compartments (e.g. soil, plants, animals, humans, wastewater), a "One Health" approach is needed to combat this problem. The equine hindgut is an understudied but potentially significant reservoir of ARGs and MGEs, since horses have close contact with humans, their manure is used in agriculture, they have a dense microbiome of both bacteria and fungi, and many antimicrobials used for equine treatment are also used in human medicine. Here, we collate information to date about resistance genes, plasmids, and class 1 integrons from equine-derived bacteria, we discuss why the equine hindgut deserves increased attention as a potential reservoir of ARGs, and we suggest ways to minimize the selection for ARGs in horses, in order to prevent their spread to the wider community.


Assuntos
Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal , Genes Bacterianos , Cavalos/microbiologia , Sequências Repetitivas Dispersas , Intestino Grosso/microbiologia , Ração Animal , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Suplementos Nutricionais , Transferência Genética Horizontal , Plasmídeos , Solo
5.
Front Bioeng Biotechnol ; 9: 804234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35083206

RESUMO

Monooxygenases are a class of enzymes that facilitate the bacterial degradation of alkanes and alkenes. The regulatory components associated with monooxygenases are nature's own hydrocarbon sensors, and once functionally characterised, these components can be used to create rapid, inexpensive and sensitive biosensors for use in applications such as bioremediation and metabolic engineering. Many bacterial monooxygenases have been identified, yet the regulation of only a few of these have been investigated in detail. A wealth of genetic and functional diversity of regulatory enzymes and promoter elements still remains unexplored and unexploited, both in published genome sequences and in yet-to-be-cultured bacteria. In this review we examine in detail the current state of research on monooxygenase gene regulation, and on the development of transcription-factor-based microbial biosensors for detection of alkanes and alkenes. A new framework for the systematic characterisation of the underlying genetic components and for further development of biosensors is presented, and we identify focus areas that should be targeted to enable progression of more biosensor candidates to commercialisation and deployment in industry and in the environment.

6.
Environ Sci Technol ; 54(17): 10399-10410, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32786599

RESUMO

Trifluralin is a widely used dinitroaniline herbicide, which can persist in the environment and has substantial ecotoxicity, especially to aquatic organisms. Trifluralin is very insoluble in water (0.22 mg/L at 20 °C) and highly volatile (vapor pressure of 6.7 mPa at 20 °C); these physicochemical properties determine a large part of its environmental fate, which includes rapid loss from soils if surface-applied, strong binding to soil organic matter, and negligible leaching into water. The trifluralin structure contains a tertiary amino group, two nitro-groups and a trifluoromethyl- group. Despite the strongly xenobiotic character of some of these substituents, biodegradation of trifluralin does occur, and pure cultures of bacteria and fungi capable of partially degrading the molecule either by dealkylation or nitro-group reduction have been identified. There are many unanswered questions about the environmental fate and metabolism of this herbicide; the genes and enzymes responsible for biodegradation are largely unknown, the relative roles of abiotic processes vs growth-linked biodegradation vs cometabolism are unresolved, and the impact of different environmental factors on the rates and extents of biodegradation are not clear. Here, we summarize the relevant literature on the persistence and environmental fate of trifluralin with a focus on biodegradation pathways and mechanisms, and we identify the current major knowledge gaps for future research.


Assuntos
Herbicidas , Poluentes do Solo , Bactérias , Biodegradação Ambiental , Fungos , Herbicidas/análise , Poluentes do Solo/análise , Trifluralina/análise
7.
Curr Biol ; 30(19): 3848-3855.e4, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32763167

RESUMO

The evolutionary processes that drive variation in genome size across the tree of life remain unresolved. Effective population size (Ne) is thought to play an important role in shaping genome size [1-3]-a key example being the reduced genomes of insect endosymbionts, which undergo population bottlenecks during transmission [4]. However, the existence of reduced genomes in marine and terrestrial prokaryote species with large Ne indicate that genome reduction is influenced by multiple processes [3]. One candidate process is enhanced mutation rate, which can increase adaptive capacity but can also promote gene loss. To investigate evolutionary forces associated with prokaryotic genome reduction, we performed molecular evolutionary and phylogenomic analyses of nine lineages from five bacterial and archaeal phyla. We found that gene-loss rate strongly correlated with synonymous substitution rate (a proxy for mutation rate) in seven of the nine lineages. However, gene-loss rate showed weak or no correlation with the ratio of nonsynonymous/synonymous substitution rate (dN/dS). These results indicate that genome reduction is largely associated with increased mutation rate, while the association between gene loss and changes in Ne is less well defined. Lineages with relatively high dS and dN, as well as smaller genomes, lacked multiple DNA repair genes, providing a proximate cause for increased mutation rates. Our findings suggest that similar mechanisms drive genome reduction in both intracellular and free-living prokaryotes, with implications for developing a comprehensive theory of prokaryote genome size evolution.


Assuntos
Archaea/genética , Bactérias/genética , Instabilidade Genômica/genética , Evolução Molecular , Deriva Genética , Variação Genética/genética , Genoma/genética , Genoma Bacteriano/genética , Mutação , Taxa de Mutação , Filogenia , Densidade Demográfica , Células Procarióticas/metabolismo , Seleção Genética/genética
8.
ACS Synth Biol ; 8(7): 1620-1630, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31250633

RESUMO

Vitamin K is essential for blood coagulation and plays important roles in bone and cardiovascular health. Menaquinone-7 (MK-7) is one form of vitamin K that is especially useful due to its long half-life in the circulation. MK-7 is difficult to make via organic synthesis, and is thus commonly produced by fermentation. This study aimed to genetically modify Bacillus subtilis cultures to increase their MK-7 yield and reduce production costs. We constructed 12 different strains of B. subtilis 168 by overexpressing different combinations of the rate-limiting enzymes Dxs, Dxr, Idi, and MenA. We observed an 11-fold enhancement of production in the best-performing strain, resulting in 50 mg/L MK-7. Metabolite analysis revealed new bottlenecks in the pathway at IspG and IspH, which suggest avenues for further optimization. This work highlights the usefulness of Bacillus subtilis for industrial production of high value compounds.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Receptor EphB6/metabolismo , Transdução de Sinais/fisiologia , Vitamina K 2/análogos & derivados , Meios de Cultura/metabolismo , Fermentação/fisiologia , Engenharia Metabólica/métodos , Vitamina K 2/metabolismo
9.
Sci Total Environ ; 658: 105-115, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30572210

RESUMO

Glyphosate (GLP) is one of the most widely-used herbicides globally and its toxicity to humans and the environment is controversial. GLP is biodegradable, but little is known about the importance of site exposure history and other environmental variables on the rate and pathway of biodegradation. Here, GLP was added to microcosms of soils and sediments with different exposure histories and these were incubated with amendments of glucose, ammonium, and phosphate. GLP concentrations were measured with a newly-developed HPLC method capable of tolerating high concentrations of ammonium and amino acids. GLP biodegradation occurred after a lag-time proportional to the level of GLP pre-exposure in anthropogenically-impacted samples (soils and sediments), while no degradation occurred in samples from a pristine sediment after 180 days of incubation. Exposure history did not influence the rate of GLP degradation, after the lag-time was elapsed. Addition of C, N, and P triggered GLP degradation in pristine sediment and shortened the lag-time before degradation in other samples. In all microcosms, GLP was metabolised into aminomethylphosphonic acid (AMPA), which was highly persistent, and thus appears to be a more problematic pollutant than GLP. Bacterial communities changed along the gradients of anthropogenic impacts, but in some cases, taxonomically very-similar communities showed dramatically different activities with GLP. Our findings reveal important interactions between agriculturally-relevant nutrients and herbicides.


Assuntos
Biodegradação Ambiental , Sedimentos Geológicos/química , Glicina/análogos & derivados , Herbicidas/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Glicina/análise , Glicina/metabolismo , Herbicidas/análise , Cinética , Modelos Químicos , Microbiologia do Solo , Poluentes do Solo/análise
10.
Water Res ; 146: 37-54, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30223108

RESUMO

Biodegradation of glyphosate (GLP) and its metabolite aminomethylphosphonic acid (AMPA) was numerically assessed for a vineyard and a wheat field in the Po Valley, Italy. Calculation of the Hazard Quotient suggested that GLP and AMPA can pose a risk of aquifer contamination in the top 1.5 m depth within 50 years of GLP use. Numerical results relative to soil GLP and AMPA concentrations, and GLP age, half life, and turnover time show that GLP was equivalently removed through hydrolysis and oxidation, but the latter produced AMPA. Biodegradation processes in the root zone removed more than 90% of applied GLP and more than 23% of the produced AMPA between two consecutive applications. Doubling organic carbon availability enhanced GLP and AMPA biodegradation, especially GLP hydrolysis to sarcosine. This work highlights that GLP and AMPA removal is controlled by soil water dynamics that depend on ecohydrological boundary conditions, and by carbon sources availability to biodegraders.


Assuntos
Água Subterrânea , Herbicidas , Fazendas , Glicina/análogos & derivados , Itália , Triticum
11.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29802186

RESUMO

Alkene monooxygenases (MOs) are soluble di-iron-containing enzymes found in bacteria that grow on alkenes. Here, we report improved heterologous expression systems for the propene MO (PmoABCD) and ethene MO (EtnABCD) from Mycobacterium chubuense strain NBB4. Strong functional expression of PmoABCD and EtnABCD was achieved in Mycobacterium smegmatis mc2155, yielding epoxidation activities (62 and 27 nmol/min/mg protein, respectively) higher than any reported to date for heterologous expression of a di-iron MO system. Both PmoABCD and EtnABCD were specialized for the oxidation of gaseous alkenes (C2 to C4), and their activity was much lower on liquid alkenes (C5 to C8). Despite intensive efforts to express the complete EtnABCD enzyme in Escherichia coli, this was not achieved, although recombinant EtnB and EtnD proteins could be purified individually in soluble form. The biochemical function of EtnD as an oxidoreductase was confirmed (1.36 µmol cytochrome c reduced/min/mg protein). Cloning the EtnABCD gene cluster into Pseudomonas putida KT2440 yielded detectable epoxidation of ethene (0.5 nmol/min/mg protein), and this could be stimulated (up to 1.1 nmol/min/mg protein) by the coexpression of cpn60 chaperonins from either Mycobacterium spp. or E. coli Successful expression of the ethene MO in a Gram-negative host was validated by both whole-cell activity assays and peptide mass spectrometry of induced proteins seen on SDS-PAGE gels.IMPORTANCE Alkene MOs are of interest for their potential roles in industrial biocatalysis, most notably for the stereoselective synthesis of epoxides. Wild-type bacteria that grow on alkenes have high activities for alkene oxidation but are problematic for biocatalysis, since they tend to consume the epoxide products. Using recombinant biocatalysts is the obvious alternative, but a major bottleneck is the low activities of recombinant alkene MOs. Here, we provide new high-activity recombinant biocatalysts for alkene oxidation, and we provide insights into how to further improve these systems.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Expressão Gênica , Mycobacterium smegmatis/genética , Mycobacterium/enzimologia , Oxigenases/genética , Pseudomonas putida/genética , Alcenos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Citocromos c , Escherichia coli/metabolismo , Etilenos/metabolismo , Cinética , Mycobacterium/genética , Mycobacterium smegmatis/metabolismo , Oxigenases/química , Oxigenases/metabolismo , Pseudomonas putida/metabolismo
12.
Sci Rep ; 8(1): 6059, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643384

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

13.
FEMS Microbiol Ecol ; 93(11)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040474

RESUMO

1,2-Dichloroethane (DCA) is a problematic groundwater pollutant. Factors influencing the distribution and activities of DCA-degrading bacteria are not well understood, which has hampered their application for bioremediation. Here, we used quantitative PCR to investigate the distribution of putative DCA-dehalogenating bacteria at a DCA-impacted site in Sydney (Australia). The dehalogenase genes dhlA, tceA and bvcA were detected in all groundwater samples (n = 15), while vcrA was found in 11/15 samples. The 16S rRNA gene sequences specific to the dehalogenating genera Dehalobacter, Desulfitobacterium and Dehalogenimonas were detected in 15/15, 13/15 and 13/15 samples, respectively, while Dehalococcoides sequences were found in 9/15 samples. The tceA, bvcA and vcrA genes occurred in the same samples as Dehalococcoides and Dehalobacter. Microcosm experiments confirmed the presence of bacteria capable of dechlorination under anoxic conditions. The abundance of the dhlA gene, which is found in hydrolytic DCA degraders, was positively correlated to the DCA concentration, and was unexpectedly most abundant in samples with low oxygen conditions. A dhlA-containing bacterium isolated from the site (Xanthobacter EL8) was capable of anaerobic growth on DCA under denitrifying conditions. The presence of diverse DCA-dehalogenating bacteria at this site indicates that natural attenuation or biostimulation could be valid approaches for site cleanup.


Assuntos
Bactérias/metabolismo , Dicloretos de Etileno/metabolismo , Água Subterrânea/microbiologia , Hidrocarbonetos Clorados/metabolismo , Poluentes Químicos da Água/metabolismo , Aerobiose , Anaerobiose , Austrália , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Dicloretos de Etileno/análise , Água Subterrânea/química , Halogenação , Hidrocarbonetos Clorados/análise , Filogenia , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/análise
14.
Sci Rep ; 7(1): 8314, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814720

RESUMO

Methane concentration in caves is commonly much lower than the external atmosphere, yet the cave CH4 depletion causal mechanism is contested and dynamic links to external diurnal and seasonal temperature cycles unknown. Here, we report a continuous 3-year record of cave methane and other trace gases in Jenolan Caves, Australia which shows a seasonal cycle of extreme CH4 depletion, from ambient ~1,775 ppb to near zero during summer and to ~800 ppb in winter. Methanotrophic bacteria, some newly-discovered, rapidly consume methane on cave surfaces and in external karst soils with lifetimes in the cave of a few hours. Extreme bacterial selection due to the absence of alternate carbon sources for growth in the cave environment has resulted in an extremely high proportion 2-12% of methanotrophs in the total bacteria present. Unexpected seasonal bias in our cave CH4 depletion record is explained by a three-step process involving methanotrophy in aerobic karst soil above the cave, summer transport of soil-gas into the cave through epikarst, followed by further cave CH4 depletion. Disentangling cause and effect of cave gas variations by tracing sources and sinks has identified seasonal speleothem growth bias, with implied palaeo-climate record bias.

15.
J Inorg Biochem ; 177: 328-334, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28789807

RESUMO

The continued use of platinum-based chemotherapeutic drugs in the clinic mandates the need for further investigation of the biological activity of structural analogues of the clinically approved complexes. Of interest are monofunctional platinum(II) complexes, which bear only one labile ligand, for which it is believed that each complex binds to DNA only once. Pyriplatin ([PtCl(NH3)2(py)]+) and enpyriplatin ([PtCl(en)(py)]+) are both monofunctional platinum(II) complexes that bear a pyridine ligand and a labile chlorido ligand, differing in their cis­ammine and ethane-1,2-diamine (en) ligands respectively. Despite their similar structure, the complexes exhibit dramatically different cytotoxicities. In this study, we synthesized and characterized both complexes in terms of their cytotoxicity, lipophilicity, DNA binding and cellular accumulation. There was no significant difference between the lipophilicities of the complexes and both complexes exhibited monofunctional type binding, but it was the temporal accumulation profiles of the two complexes which differed greatly. The complexes were further analyzed with size exclusion chromatography coupled with inductively coupled plasma mass spectrometry (SEC-ICP-MS) to determine the platination state of the proteins. Consistent with the accumulation studies, pyriplatin bound to proteins in far greater amounts than enpyriplatin, and this study also revealed some different protein targets between the bifunctional cisplatin and monofunctional pyriplatin. This study highlights the need for more sophisticated techniques, such as SEC-ICP-MS, to determine not only how much of a platinum complex accumulates in cells, but also the speciation and metabolites of platinum anticancer drugs.


Assuntos
Cisplatino/farmacologia , Complexos de Coordenação/farmacologia , DNA/química , Etilenodiaminas/farmacologia , Compostos Organoplatínicos/farmacologia , Platina/química , Animais , Bovinos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cisplatino/química , Complexos de Coordenação/química , Citoplasma/metabolismo , Etilenodiaminas/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Compostos Organoplatínicos/química
16.
Microb Ecol Health Dis ; 27: 31307, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27834171

RESUMO

BACKGROUND: Previously, we demonstrated that bacteria reside in apparently healed alveolar bone, using culture and Sanger sequencing techniques. Bacteria in apparently healed alveolar bone may have a role in peri-implantitis and dental implant failure. OBJECTIVE: To compare bacterial communities associated with apical periodontitis, those colonising a failed implant and alveolar bone with reference biofilm samples from healthy teeth. METHODS AND RESULTS: The study consisted of 196 samples collected from 40 patients undergoing routine dental implant insertion or rehabilitation. The bacterial 16S ribosomal DNA sequences were amplified. Samples yielding sufficient polymerase chain reaction product for further molecular analyses were subjected to terminal restriction fragment length polymorphism (T-RFLP; 31 samples) and next generation DNA sequencing (454 GS FLX Titanium; 8 samples). T-RFLP analysis revealed that the bacterial communities in diseased tissues were more similar to each other (p<0.049) than those from the healthy reference samples. Next generation sequencing detected 13 bacterial phyla and 373 putative bacterial species, revealing an increased abundance of Gram-negative [Prevotella, Fusobacterium (p<0.004), Treponema, Veillonellaceae, TG5 (Synergistetes)] bacteria and a decreased abundance of Gram-positive [(Actinomyces, Corynebacterium (p<0.008)] bacteria in the diseased tissue samples (n=5) relative to reference supragingival healthy samples (n=3). CONCLUSION: Increased abundances of Prevotella, Fusobacterium and TG5 (Synergistetes) were associated with apical periodontitis and a failed implant. A larger sample set is needed to confirm these trends and to better define the processes of bacterial pathogenesis in implant failure and apical periodontitis. The application of combined culture-based, microscopic and molecular technique-based approaches is suggested for future studies.

17.
Appl Environ Microbiol ; 82(17): 5298-308, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27342553

RESUMO

UNLABELLED: 1,2-Dichloroethane (DCA) is a problematic xenobiotic groundwater pollutant. Bacteria are capable of biodegrading DCA, but the evolution of such bacteria is not well understood. In particular, the mechanisms by which bacteria acquire the key dehalogenase genes dhlA and dhlB have not been well defined. In this study, the genomic context of dhlA and dhlB was determined in three aerobic DCA-degrading bacteria (Starkeya novella strain EL1, Xanthobacter autotrophicus strain EL4, and Xanthobacter flavus strain EL8) isolated from a groundwater treatment plant (GTP). A haloalkane dehalogenase gene (dhlA) identical to the canonical dhlA gene from Xanthobacter sp. strain GJ10 was present in all three isolates, and, in each case, the dhlA gene was carried on a variant of a 37-kb circular plasmid, which was named pDCA. Sequence analysis of the repA replication initiator gene indicated that pDCA was a member of the pTAR plasmid family, related to catabolic plasmids from the Alphaproteobacteria, which enable growth on aromatics, dimethylformamide, and tartrate. Genes for plasmid replication, mobilization, and stabilization were identified, along with two insertion sequences (ISXa1 and ISPme1) which were likely to have mobilized dhlA and dhlB and played a role in the evolution of aerobic DCA-degrading bacteria. Two haloacid dehalogenase genes (dhlB1 and dhlB2) were detected in the GTP isolates; dhlB1 was most likely chromosomal and was similar to the canonical dhlB gene from strain GJ10, while dhlB2 was carried on pDCA and was not closely related to dhlB1 Heterologous expression of the DhlB2 protein confirmed that this plasmid-borne dehalogenase was capable of chloroacetate dechlorination. IMPORTANCE: Earlier studies on the DCA-degrading Xanthobacter sp. strain GJ10 indicated that the key dehalogenases dhlA and dhlB were carried on a 225-kb linear plasmid and on the chromosome, respectively. The present study has found a dramatically different gene organization in more recently isolated DCA-degrading Xanthobacter strains from Australia, in which a relatively small circular plasmid (pDCA) carries both dhlA and dhlB homologs. pDCA represents a true organochlorine-catabolic plasmid, first because its only obvious metabolic phenotype is dehalogenation of organochlorines, and second because acquisition of this plasmid provides both key enzymes required for carbon-chlorine bond cleavage. The discovery of the alternative haloacid dehalogenase dhlB2 in pDCA increases the known genetic diversity of bacterial chloroacetate-hydrolyzing enzymes.


Assuntos
Alphaproteobacteria/isolamento & purificação , Dicloretos de Etileno/metabolismo , Água Subterrânea/microbiologia , Plasmídeos/genética , Poluentes Químicos da Água/metabolismo , Xanthobacter/isolamento & purificação , Alphaproteobacteria/química , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Sequência de Aminoácidos , Austrália , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Dados de Sequência Molecular , Plasmídeos/metabolismo , Alinhamento de Sequência , Poluição Química da Água , Xanthobacter/química , Xanthobacter/genética , Xanthobacter/metabolismo
18.
Mol Microbiol ; 97(3): 439-53, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25899475

RESUMO

Haloalkane dehalogenases (HLDs) catalyse the hydrolysis of haloalkanes to alcohols, offering a biological solution for toxic haloalkane industrial wastes. Hundreds of putative HLD genes have been identified in bacterial genomes, but relatively few enzymes have been characterised. We identified two novel HLDs in the genome of Mycobacterium rhodesiae strain JS60, an isolate from an organochlorine-contaminated site: DmrA and DmrB. Both recombinant enzymes were active against C2-C6 haloalkanes, with a preference for brominated linear substrates. However, DmrA had higher activity against a wider range of substrates. The kinetic parameters of DmrA with 4-bromobutyronitrile as a substrate were Km = 1.9 ± 0.2 mM, kcat = 3.1 ± 0.2 s(-1) . DmrB showed the highest activity against 1-bromohexane. DmrA is monomeric, whereas DmrB is tetrameric. We determined the crystal structure of selenomethionyl DmrA to 1.7 Å resolution. A spacious active site and alternate conformations of a methionine side-chain in the slot access tunnel may contribute to the broad substrate activity of DmrA. We show that M. rhodesiae JS60 can utilise 1-iodopropane, 1-iodobutane and 1-bromobutane as sole carbon and energy sources. This ability appears to be conferred predominantly through DmrA, which shows significantly higher levels of upregulation in response to haloalkanes than DmrB.


Assuntos
Alcanos/metabolismo , Hidrocarbonetos Halogenados/metabolismo , Hidrolases/metabolismo , Mycobacterium/enzimologia , Mycobacterium/metabolismo , Carbono/metabolismo , Domínio Catalítico , Cristalografia por Raios X , DNA Bacteriano/química , DNA Bacteriano/genética , Metabolismo Energético , Microbiologia Ambiental , Hidrolases/química , Hidrolases/genética , Hidrolases/isolamento & purificação , Hidrólise , Cinética , Dados de Sequência Molecular , Mycobacterium/crescimento & desenvolvimento , Mycobacterium/isolamento & purificação , Conformação Proteica , Análise de Sequência de DNA , Especificidade por Substrato
19.
Appl Environ Microbiol ; 80(18): 5801-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25015887

RESUMO

Monooxygenase (MO) enzymes initiate the aerobic oxidation of alkanes and alkenes in bacteria. A cluster of MO genes (smoXYB1C1Z) of thus-far-unknown function was found previously in the genomes of two Mycobacterium strains (NBB3 and NBB4) which grow on hydrocarbons. The predicted Smo enzymes have only moderate amino acid identity (30 to 60%) to their closest homologs, the soluble methane and butane MOs (sMMO and sBMO), and the smo gene cluster has a different organization from those of sMMO and sBMO. The smoXYB1C1Z genes of NBB4 were cloned into pMycoFos to make pSmo, which was transformed into Mycobacterium smegmatis mc(2)-155. Cells of mc(2)-155(pSmo) metabolized C2 to C4 alkanes, alkenes, and chlorinated hydrocarbons. The activities of mc(2)-155(pSmo) cells were 0.94, 0.57, 0.12, and 0.04 nmol/min/mg of protein with ethene, ethane, propane, and butane as substrates, respectively. The mc(2)-155(pSmo) cells made epoxides from ethene, propene, and 1-butene, confirming that Smo was an oxygenase. Epoxides were not produced from larger alkenes (1-octene and styrene). Vinyl chloride and 1,2-dichloroethane were biodegraded by cells expressing Smo, with production of inorganic chloride. This study shows that Smo is a functional oxygenase which is active against small hydrocarbons. M. smegmatis mc(2)-155(pSmo) provides a new model for studying sMMO-like monooxygenases.


Assuntos
Alcanos/metabolismo , Alcenos/metabolismo , Mycobacterium/enzimologia , Oxigenases/genética , Oxigenases/metabolismo , Biotransformação , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Compostos de Epóxi/metabolismo , Hidrocarbonetos Clorados/metabolismo , Dados de Sequência Molecular , Família Multigênica , Mycobacterium/genética , Plasmídeos , Transformação Bacteriana
20.
Microbiology (Reading) ; 160(Pt 6): 1267-1277, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24682027

RESUMO

The hydrocarbon monooxygenase (HMO) of Mycobacterium NBB4 is a member of the copper-containing membrane monooxygenase (CuMMO) superfamily, which also contains particulate methane monooxygenases (pMMOs) and ammonia monooxygenases (AMOs). CuMMOs have broad applications due to their ability to catalyse the oxidation of difficult substrates of environmental and industrial relevance. Most of our understanding of CuMMO biochemistry is based on pMMOs and AMOs as models. All three available structures are from pMMOs. These share two metal sites: a dicopper centre coordinated by histidine residues in subunit-B and a 'variable-metal' site coordinated by carboxylate and histidine residues from subunit-C. The exact nature and role of these sites is strongly debated. Significant barriers to progress have been the physiologically specialized nature of methanotrophs and autotrophic ammonia-oxidizers, lack of a recombinant expression system for either enzyme and difficulty in purification of active protein. In this study we use the newly developed HMO model system to perform site-directed mutagenesis on the predicted metal-binding residues in the HmoB and HmoC of NBB4 HMO. All mutations of predicted HmoC metal centre ligands abolished enzyme activity. Mutation of a predicted copper-binding residue of HmoB (B-H155V) reduced activity by 81 %. Mutation of a site that shows conservation within physiologically defined subgroups of CuMMOs was shown to reduce relative HMO activity towards larger alkanes. The study demonstrates that the modelled dicopper site of subunit-B is not sufficient for HMO activity and that a metal centre predicted to be coordinated by residues in subunit-C is essential for activity.


Assuntos
Cobre/metabolismo , Hidrocarbonetos/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mycobacterium/enzimologia , Domínio Catalítico , Membrana Celular/enzimologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...